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Abstract 

Let R be a one-dimensional noetherian domain containing the field Q of rational numbers. 

Let A be an A’-fibration over R. Then there exists HE A such that A is an A’-fibration over 
R[H]. As a consequence, if a,,, is free then A = R[‘]. 

AMS classijication: Primary 13B25, secondary 14D99 

1. Introduction 

Let R be a commutative ring with unity. Let R[“] denote a polynomial ring in 

IZ variables over R. For a prime ideal P of R, K(P) denotes the field Rp/PRp. An 
R-algebra A is said to be an A*-fibration over R if 

(i) A is finitely generated over R. 

(ii) A is flat over R. 

(iii) A OR K(P) = K(P)t’] for every prime ideal P of R. 

If R is a discrete valuation ring containing Q (the field of rationals) and A is an 
A’-fibration over R, then in [9, Theorem l] Sathaye has proved that A = R[‘]. As 

a consequence, if A is an A’-fibration over a Dedekind ring R containing Q, then by 
the result of Bass-Connell-Wright [4, 4.41 A r SymR(E) for a finitely generated 
projective R-module E of rank 2. On the other hand, if a discrete valuation ring R does 
not contain Q then Asanuma [2, 5.11 has shown that there exists an A2-fibration 
A over R such that A $ RC2]. 

In view of the above mentioned results, it is natural to ask: How does an AZ-jibration 

urise ozjer an urbitrary one-dimensional noetherian domain R containing Q? An obvious 
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way of constructing A’-fibrations over R is to take the tensor product of A’-fibrations 
B and C over R. Let us call such A’-fibrations decomposable. Then one would like to 
know whether all A2-fibrations over a one-dimensional noetherian domain R (con- 

taining Q) are decomposable. Example 3.12 of this paper shows that not all A2- 
fibrations are decomposable. 

Another way to construct an A2-fibration over R is to take an A’-fibration B over 
R (e.g. B = R[‘]) and take an A’-fibration A over B. In this paper we show that this is 

the only way to construct A2-fibrations over R. More precisely, we prove (see 

Theorem 3.8): 

Theorem. Let R be a one-dimensional noetherian domain containing the jield Q of 

rational numbers. Let A be an A2-jibration over R. Then there exists HE A such that A is 

an A’-jibration over R[H]. 

As a consequence of this theorem we show that (see Corollary 3.9) if QAIR is 
extended from R then A 2 Sym,(E). In particular, if R is local, then A = RL2]. Thus, 

QAIR being not free is the only obstruction for the result of Sathaye to be not true for 
an arbitrary local domain R of dimension 1. 

In Section 2 we set up notations and quote some results for later use. In Section 3 

we prove our main theorems. 

2. Preliminaries 

Throughout this paper all rings will be commutative, noetherian with unity. We 
now set up notations and state some results for later use. 

Q: field of rational numbers. 

For a commutative ring R, 

R[“]: polynomial ring in n variables over R. 

For an R-module E, 

Sym,(E): symmetric algebra of E over R. 

For a prime ideal P of R, 

K(P): RpIPR,. 

For a finitely generated R-algebra A, 

R a,R: universal module of R-differentials of A. 

For elements F, GE R [X, Y] = RI’], 

J,,,,,(F,G): (aF/ax)(ac/a~) - (aF/ar)(aG/ax) 
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Definition 2.1. An R-algebra A is said to be an A’-jibration over R if the following 
hold: 

(i) A is finitely generated over R. 

(ii) A is R-flat. 
(iii) A OR K(P) = K(P)[” for every prime ideal P of R. 

Definition 2.2. An A’-fibration A over R is said to be decomposable if there exists an 

A’-fibration B over R and an A”-fibration C over R for positive integers 1 and m such 

that A g B OR C as R-algebras. 

Definition 2.3. Let A be a ring and R a subring of A. R is said to be a retract of A if 

there exists an R-algebra homomorphism CI : A + R. 

We will now quote some results which will be needed in this paper. We begin with 

the following result [2, 3.41: 

Theorem 2.4. If A is an A’-Jibration over a commutative noetherian ring R, then QAiR is 

a jinitely generated projective A-module of (constant) rank r and A is (upto an 

R-isomorphism) an R-subalgebra of R[“‘lfor some m such that 

A[“‘] z Sym,~.l(R[“] QA QAIR): 

as R-algebras. Therefore A is a retract of R[“] for some n. 

Next we state a result which follows from [4, 4.41: 

Theorem 2.5. Let R be a noetherian commutative ring and let A be ajinitely generated 

R-algebra such that Aw z R$ as RM-algebras for all maximal ideals M of R. Then, 

A g Sym,(E) for someJinitely generated projective R-module E of (constant) rank r. 

The following result is due to Hamann [7, 2.81: 

Theorem 2.6. Let R be a noetherian ring containing Q. Then, R[‘] is R-invariant, that is, 

if A is an R-algebra such that Al”‘] = Rlrn+ll as R-algebras, then A = R[‘l. 

As a consequence of Theorems 2.4-2.6 we derive the following: 

Proposition 2.7. Let R be a noetherian ring containing Q. Let A be an A’-Jibration over 
R such that QAIR is extendedfrom R. Then, A g SymR(L) as R-algebrasfor somefinitely 

generated projective R-module L of (constant) rank 1: 

The next theorem is due to Sathaye [9, Theorem 11: 
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Theorem 2.8. Let R be a discrete valuation ring containing Q. Let A be an A’-fibration 

over R. Then. A = Rtzl. 

The following theorem is the famous epimorphism theorem of Abhyankar and 
Moh [l]: 

Theorem 2.9. Let K be a field of characteristic 0. Let f (Z), g(Z) be two elements of 

K[Z] (= K[“) such that K [Z] = K[f(Z), g(Z)] where degzf(Z) = m > 0, 

degz g(Z) = n > 0. Then, either m divides n or n divides m. As a consequence, if 

WE K[X, Y] (= K[“) be such that K[X, Y]/(W) = KC” as K-algebras, then 

K[X, Y] = K[W][? 

We conclude this section by stating a result from [6, 3.11: 

Theorem 2.10. Let R be a noetherian ring offmite (Krull) dimension d. Let E be a$nitely 

generated projective R[“‘-module of rank 2 d + 1. Then, there exists a surjective 

R[“‘-linear homomorphism $ : E + R[“‘. In particular, if d = 1, and E is ajinitely gener- 

ated projective R[“’ -module of constant rank m with FE z R[“’ (as R[“‘-modules), then 

E is free (of rank m). 

3. Main theorems 

In this section we shall prove our main theorems (Theorems 3.8 and 3.11). For the 

proof of these theorems we need some lemmas. We begin with 

Lemma 3.1. Let K be a field of characteristic 0. Let K [U, V] = Krzl and let 

f(U)EK[U] and g(V)EK[V] b e such that deg,f(U) > 0 and deg,g(V) > 0. Let 

h(U, V) =f(U) + g(V). Then K[U, V]/(h(U, V)) is a reduced ring. 

Proof. Since ah(U, V)/aU =f’(U) (=df(U)/dU), ah(U, V)/aV = g’(V) (=dg(V)/dV) 

andf’(U), g’(V) are non-zero, we have ht(ah(U, V)/aU, ah(U, V)/aV) 2 2. Therefore 
the result follows. 0 

Lemma 3.2. Let T be a ring containing Q and let a1, . . . , cc,+ I be n + 1 distinct rational 
numbers. Let F(X, Y) E T [X, Y ] be a homogeneous polynomial in X and Y of degree n. 

Then there exist t l,...,t,,+l~T such that F =ClT,‘ti(X + NiY)“. 

Proof. Since it is enough to prove the result for monomials of the type X’Y” 
(1 + m = n), without loss of generality we can assume that T = Q. In that case it is 
enough to show that the (homogeneous) polynomials (X + CliY )“, 1 < i I n + 1, are 
linearly independent over Q. 
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Let P1,...,Bn+l EQ be such that 

II+1 
iF, PiCx + ziy)” = O. 

The above equation implies that ClJ: &fii = 0 for all j, 0 5 j I n. Therefore we get the 
following matrix equation: 

CP 1,...,Bn+JA = CO,...,Ol. 

where A is the (n + 1 x n + 1) Vandermonde matrix whose (i, j)th entry is $‘. Since 

Xl, . . ..&I+1 are all distinct, the matrix A is invertible. Therefore pi = 0 for 

l<i<n+l. 
Thus the polynomials (X + CciY)n, 1 I i I n + 1, are linearly independent 

over Q. 0 

Lemma 3.3. Let R be a one-dimensional noetherian domain containing Q. Let A be an 

A2-fibration over R. Then there exists afinite birational extension T of R and afinitely 

generated projective T-module L of rank 1 such that A OR T = Symr(L)[‘]. 

Proof. Let K denote the quotient field of R and R denote the normalization of R. 

Since A OR K = IPI and A is finitely generated over R, there exists t( # 0) E R such 

that A [l/t] = R [ l/t][21. If t is invertible then there is nothing to prove. So we assume 

that t is not invertible. 
Let S = 1 + tR. Then Rs is semilocal and hence R”, is a semilocal principal ideal 

domain. Therefore (A OR I?)s = R”k2’ by Theorems 2.5 and 2.8. Hence as before 
there exists s E S such that A OR R[l/s] = R”[l/s]t2]. Since A is flat over R and every 
finite birational extension of R[l/s] is of the type R’[l/s] where R’ is a finite bi- 
rational extension of R, it follows that there exists a finite birational extension T of R 

such that A OR T [l/s] = T [ l/~][‘~. Moreover, as A [l/t] = R [l/t][‘], we have 
A OR T[l/t] = T[l/tlC2]. 

Thus A OR T [ l/s] = T [ l/s]t2], A OR T [ l/t] = T [ l/t][21 and tR + sR = R. There- 
fore by Theorem 2.5, there exists a finitely generated projective T-module E of rank 
2 such that A OR T = Sym,(E). Since rank E = 2 > dim T, by a theorem of Serre [3, 
Corollary 2.7, p. 1731, E 2 L @ T. Therefore A OR T = Symr(L)[“. 0 

Lemma 3.4. Let T be a noetherian ring and let I and N be proper ideals of T such that 

I + N = T. Let L be afinitely generated projective T-module of (constant) rank 1 such 

that L/IL is free over T/I and let X E L/IL be a generator of L/IL. Let B = Sym,(L) and 

D = B[ Y] ( = Bt’]). Then D/ID = (T/I) [X, Y] (= (T/I)[‘]). Moreover ifX,, Y1 E D/ID 

be such that 

(X1, Y,) = (X, Y +f(X)) or (X + g(Y), Y), 

where f (X) E (T/I) [X] and g(Y) E (T/I) [ Y 1, then the T/I-algebra automorphism t3 of 

D/ID (= (T/I) [X, Y]) given by g(X) = X1, g(Y) = Y 1 can be lifted to a T-algebra 

automorphism o of D such that o = identity (mod ND). 
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Proof. Since I + N = T, there exists an element s E N such that 1 - s ~1. Now, as 

D/ID = (B/Z)[Y] = SymT,&/ZL)[Y] and L/IL is a free T/I-module of rank 1 with 

a generator X, it is easy to see that D/ID = (T/Z) [X, Y ] ( = T/IL”]). 

If X1 = X and Y, = Y +f(X) withf(X) E (T/Z) [X] ( = B/IB) then let b E B be such 

that 6 (the image of b in B/ID) =S(X). Let ~7 be a B-algebra (and hence a T-algebra) 
automorphism of D (= B[Y]) such that a(Y) = Y + sb. It is clear that g is a lift of 

8 and c = identity (mod ND). 

NowsupposethatXi =X+g(Y)andY, = Y.Let$:L/ZL+(T/I)[Y]beaT/I- 
module homomorphism given by $(X) = g( Y ). Then since L is T-projective, $ can be 
lifted to a T-module homomorphism q : L + T [ Y]. Let 4 = sy and let p : L -+ D be 
a T-module homomorphism given by p(e) = e + 4(e) for e E L. Since B = Sym,(L) 

and D is commutative, p gives rise to a T-algebra homomorphism C: B + D 

(= B[ Y I). We extend B to a T-algebra endomorphism of D (which we still denote by 
o)byputtinga(Y)= Y.SinceD=Sym,(L)[Y],and4(e)ET[Y]VeEL,itiseasyto 
see that D is a locally (i.e. taking all local rings of T) automorphism. Hence c is 

a T-algebra automorphism of D such that G is a lift of 8. Since s E N, it is obvious that 
c E identity (mod ND). 

We here note that D = Sym,(a(L)) [o( Y )] and o(L)/Io(L) is a free T/I-module with 

a generator Xi. c] 

The following lemma is an easy consequence of Theorem 2.9: 

Lemma 3.5. Let K be a jeld of characteristic 0 and let W E K [X, Y ] (= Kr2]) be such 

that K [X, Y ] = K [ W ][l’. Then there exists a sequence (Xi, Yi), 1 I i I I, of pairs of 

variables in K[X, Y ] such that Y1 = W and 

(X0, YCJ = WY Y), 

Cxi, yi) = Cxi-l, yi-l +fiCxi-1) or Cxi-l + Si(yi-l), yi-1)3 

wherefi(Xi_1)EK[Xi-1], qi(Yi-1)EK[Yi-1] for 15 i 5 1. 

Proof. Since K[X, Y] = K[W][‘], we have K[X, Y]/(W)rK(Z). Let Y:K[X, Y] -+ 
K[Z] be a surjective K-algebra homomorphism such that ker(Y) = (W). 

If Y(Y) E K then there exists 6 E K such that Y (Y - 6) = 0 and hence there exists 

/?EK* such that W = p(Y - 6). Let tx = p-l and A= 1 - CC. Now consider the pairs 
(Xi, Yi), 1 I i I 4, of variables defined as follows: 

(X1, Y,) = (X, Y - d), (X2, Y2) = (Xl, y1 - Xl)> 

(X3, Y3) = (X2 + AY2, Y2L (X4 Y4) = (X3, y3 + BX3). 

It is easy to check that Y, = W. Therefore we are through. 
If Y(X)EK, then define 

(X1, Y,) = (X + Y, Y), (X2, Y2) = (Xl, y, - Xl). 
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Then Y 2 = - X and hence Y (Y 2) E K. Therefore we are through by applying the 
previous argument to Yz. 

In view of the previous cases, to complete the proof it is enough to show that if 
deg, Y(X) = m > 0 and deg, Y(Y) = n > 0 then there exists a pair of variables 

Xi, Y i such that 

(Xi, Y,) =(X, Y +f(X)) or (Xl, Yi) =(X + g(Y), Y) 

and 

deg, Y(Xi) + deg, Y(Yi) < deg, Y(X) + deg, Y(Y). 

We deal with the case m I n. The other case is similar. 
By Theorem 2.9, there exists an integer d such that n = md. Let p and v be the 

leading coefficients of Y(X) and Y(Y) respectively. Let rc = VP-~ and let (Xi, Y i ) = 
(X, Y - rcXd). It is easy to see that the pair (Xi, Y,) has the required properties. 

Thus the proof is complete. 0 

Lemma 3.6. Let T be a noetherian ring containing 62. Let MI, . . . , Mt be maximal ideals 

of T and let J = n;= 1 Mi. Let L be a finitely generated projective T-module of 

(constant) rank 1. Let B = Sym*(L) and D = B[Y] (= B[“). Then D/JD = (T/J)[“]. 

Moreover ifF E D is such that D/JD = (T/J)[F][‘], where F denotes the image of F in 

D/JD then there exists a T-algebra automorphism a of D such that F E a(Y) mod (JD). 

Proof. Since T/J is a finite direct of fields, it is easy to see that D/JD = 

Sym,,J(L/JL)[Y] = (T/J)r21. 

Let T/ML = Ki and let Wi be the image of F in D/(MiD) (= Kirzl) for 1 5 i I 1. Then 
D/JD = (T/J) [F][” implies that D/(MiD) = Ki [ Wi]“‘. 

Let Ni = nj + i Mj. Then Mi + Ni = T for 1 5 i I 1. In view of Lemmas 3.4 and 3.5, 
it is easy to see that, for 1 I i I 1, there exists a T-algebra automorphism ci of D such 
that 

(i) F s ai( Y) mod (MiD). 

(ii) Ci E identity (mod NiD). 

Let 0 = oI ... 0i. Then (T E oimod (MiD) for 1 I i < 1. Therefore F E 

a(Y)m 0 

Proposition 3.7. Let T be a noetherian ring containing 62. Let I and J be two proper 

ideals of T such that I c J c fi. Let L be a finitely generated projective T-module of 

(constant) rank 1 such that L/IL is free. Let B = Sym,(L) and D = B[ Y] (= B[ll). Let 

FED be such that F = Y mod (JD). Then there exists a T-algebra automorphism a of 
D such that F = a(Y) mod (ID). 

Proof. It is easy to see that since I c J c 4 there exists an increasing sequence 
I = I, c I, ... c I, = J of ideals of T and elements tl, . . ..t. of T such that 
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Zj = Zj- 1 + (tj) with t; E Ij- 1 for 1 I j I m. Therefore it is enough to prove the result 

in the case J = I + (t) with t2 E I. Let F, fdenote the images of F and t respectively in 
D/ID. Then F E Y mod (JD) implies that there exists f~ D/ID such that F = Y + ffi 

Since L/IL is free (of rank 1) we have D/ID = (T/Z)[X, Y] (= (T/Z)[‘]) where X is 
a generator of T/Z-module L/IL. Let f = f. + ... + fn, where fj is a homogeneous 

polynomial in X and Y of degree j, 0 I j I n. 

Let al,...,a,+l be distinct rational numbers. Then by Lemma 3.2 there exist 
elements rij, 1 I i I n + 1, 0 < j 5 n of T/Z such that 

jj = 1 rij(X + OliY)‘, 0 I j I It. 
i=l 

Let gi E(T/ZT)‘lI be such that 

gi(X + CCiY) = i rij(X + QY)j. 
j=O 

Then 

n+1 

F = Y + f C gi(X + CciY). 
i=l 

Let c10 = 0 and pi = Cli - ai- for 1 5 i 5 n + 1. NOW for every integer 

m (0 I m < 2(n + 1)) we define inductively a pair (Z,, W,,,) of variables in 
(T/Z) [X, Y] ( = D/ID) as follows: 

PO, Wo) = w, n 

(‘,’ Wm) = i 
(2,-l + PiWm-1, W,-1) if m = 2i - 1, 

(Zm-l, W,_l + tsi(Z,_l)) if m = 2i. 

It is easy to see that since ? = 0 and Cli = ai- r + pi, there exist elements 0 = 

h l,...,h,+leD/ZD such that 

i-l 

X + UiY + tii, Y + t 1 gk(X + a*Y) if m = 2i - 1, 

(Z,, W,) = I k=l > 

X + GliY + &i, Y + f i gk(X + akY) if m = 2i. 
k=l 

In particular W2(“+ 1) = Y + tz;!; gk(X + @.kY) = F. 
Let 9,: D/ID -+ D/ID (= (T/Z)r21) be a T/IT-algebra automorphism defined by 

&(Z,_ 1) = Z, and &,,(W,_ 1) = W, for 1 5 m I 2(n + 1). Then by Lemma 3.4 (and 
by induction on m) 9,,, can be lifted to a T-algebra automorphism (T, of D. Let 

fs = O2(n+l) ‘.. ol. Then (T is a T-algebra automorphism of D such that a(Y) (the image 
of a(Y) in D/ID) = Wzc,,+ 1J = F. 

Thus the proof is complete. 0 



T. Asanuma, S.M. Bhatwadekar/Journal of Pure and Applied Algebra 115 (1997) l-13 9 

Theorem 3.8. Let R be a one-dimensional noetherian domain containing Q and let A be 

an A2-jibration over R. Then there exists HE A such that A is an A’-jibration over 

R[Hl. 

Proof. By Lemma 3.3, there exists a finite birational extension T of R such that 

A OR T = (Sym,(L))[Y] (= Symr(L)[“) f or some finitely generated projective T- 

module L of rank 1. Let B = SymT(L) and D = B[Y] = A OR T. 

Let I denote the conductor ideal of T over R. If T = R then A = D = B [ Y ] and in 
this case taking H = Y we are through. Therefore we assume that R # T. In that case, 

since T is finite and birational over R, we have ht,(Z) = htT(Z) = 1 and hence 

dim(R/Z) = 0. Therefore A/IA = (R/Z)[‘]. 

Let FE A be such that AjZA = (R/Z) [F’][‘], where F’ denotes the image of F in 

A/IA. Since R 4 T and A is flat over R, we have A 4 D (= A OR T) and therefore 

we can regard F as an element of D also. Let J = $ in T and let F denote the image 
of F in D/JD. Then it is easy to see that D/JD = (T/J)[F][‘l. 

Since J is an intersection of finitely many maximal ideals of T, by Lemma 3.6 
there exists a T-algebra automorphism z of D (= (Symr(L)) [Y]) such that 
F =z(Y)mod(JD). Let Y1 = z(Y) and L1 = z(L). Then, since D = z(D) = 
(Sym,(L,))[Y,], and J is the radical of Z in T, by Proposition 3.7 there exists 
a T-algebra automorphism D of D such that F = o( Y I) mod (ID). 

Since Z is the conductor ideal of T over R, D = A OR T and A is flat over R, it 

follows that ID = IA. Therefore, as FE A and F = a(Yl) we get am A. 

Let H = o(Y1). 

The rest of the proof is devoted to show that A is an A’-fibration over R[H]. 

Let P be a prime ideal of R. If Z $ P then Rr = Tp. Therefore Ar = Dp = RPIHIC1]. 

If Z c P then as F = a(Yi and H = o(Y,), IA = ID it follows that 

F z H mod(PA). Therefore A/PA = (R/P) [fl][‘], where Z? denotes the image of H in 
A/PA. Hence, as R [H] (= R[l]) and A are flat over R, A is an A’-fibration over R [H] 

by [S, 3.81. 
Thus the proof is complete. 0 

Corollary 3.9. Let R be a one-dimensional noetherian domain containing Q. Let A be an 

A2-jibration over R such that SZaiR is extended from R. Then there exists a finitely 
generated projective R-module L of rank one such that A = SymR(L)[‘]. In particular if 

QAiR is free then A = Rr2]. 

Proof. Since A is an A2-fibration over R, by Theorem 2.4 QAiR is a finitely generated 
projective A-module of rank 2. Therefore, as aalR is extended from R and A 

is faithfully flat over R, there exists a finitely generated projective R-module E of 
rank 2 such that A ORE r QAIR. Since rank E = 2 > dim R, by a theorem of Serre 
[3, Corollary 2.7, p. 1733 E z L @ R. Hence flAIR E (A OR L) @ A. 
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Now by Theorem 3.8, there exists H in A such that A is an A’-fibration over R[H]. 

Therefore we get the following right exact sequence of A-modules: 

A @R[H] fiR[H,,R -+ Q.4,R -+ aA,R[H] + 0. 

SinCC Q,lR and QAIRIH] are projective A-modules of rank 2 and 1 respectively and 
R[H] = R[l], the above sequence is also left exact. Therefore 

A @R J!, @ A ?% QA,R c fiA,R[H] @ A 

showing that A @R L E fiA,R[H]. Therefore by Proposition 2.7, 

A = SymRrH](R[H] @R L) = SymR(L)“I. 

Furthermore if Q aiR is free then, it is easy to see that A OR L Z A and hence (as R is 
a retract of A) L E R. Therefore in this case A = R[‘]. 0 

Remark 3.10. If R is a one-dimensional seminormal noetherian domain and A is an 
A*-fibration over R, then by Theorems 2.4 and 2.10 it is easy to see that fiAIR is 

extended from R. 

Let A be an A’-fibration over a noetherian ring R. Then by Theorem 2.4 A is 
a retract of R[“] for some n. The following theorem gives sharp bound on n when r = 2 

and R is a one-dimensional domain containing Q. 

Theorem 3.11. Let R be a one-dimensional noetherian domain containing Q. Let A be an 

A*-jbration over R. Then A is a retract of RL3]. 

Proof. By Theorem 3.8, there exists HE A such that A is an A[‘]-fibration over R[H], 

Therefore QA,R[H] is a finitely generated projective A-module of rank 1. Let 

Q* = Hom,(fiA,RtHr, A) and C = Sym,(Q*). 

Then A is a retract of C. Therefore it is enough to prove that C = R[H][*] = Rr3]. The 

rest of the proof is devoted to show that C = R[H][*]. 
From the construction it is obvious that C is an A*-fibration over R[H] such that 

%IRIH] is a free C-module of rank 2. Therefore to prove that C = R [H][“, it is enough 
to show by Theorem 2.5 that C ORtHl R,[H] r R,[H][*’ for every maximal ideal 
A4 of R. Hence without loss of generality we can assume that R is local. 

By Lemma 3.3, there exists a finite birational extension T of R such that 
A OR T = Syrq-(L)[‘l for some finitely generated projective T-module L of rank 1. 
Since R is local and T is a finite extension of R, T is semilocal, and hence L is free of 
rank 1. Therefore A @R T = T[*]. Moreover A OR T is an A’-fibration over T[H]. 
Let D = A @R T. Then as in Corollary 3.9 we conclude that 

QD,T z QD,T[H] @ @&[HI,T @T[H] D). 

Therefore QDIT[H] is a free D-module of rank 1. 
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Let R’ denote the seminormalization of R in T and let D’ = A OR R’. Since R’ is 
seminormal in T and R’, T are semilocal, it follows from [S, Theorem 91 that the 
canonical map P~c(R’[“‘~) + Pic(T[“]) is injective for every positive integer m. Since D’ 

is an A’-fibration over R’[H], by Theorem 2.4, D’ is a retract of R’[H][“] for some n. 

Therefore, as D = D’ OR, T, it follows that the canonical map Pic(D’) -+ Pit(D) is 

injective. Hence, as QDIT]H] is free of rank 1, it follows that QD,iR~w is free. Hence by 
Proposition 2.7, D’ = R’[H][‘]. 

Let I denote the conductor ideal of R’ over R. Then, since R’ is the seminormaliza- 

tion of R in T and R is local it is clear that R’ is also local and (R’/I),,, = 

(RIO,,, = (R/M) = (R’IN), w h ere M and N denote the maximal ideals of the local 

rings R and R’ respectively. 
Since D’ = A OR R’ = R’[H][‘], it follows that 

C OR R’ = Sym,(Q*) @A D’ = Sym#* BAD’) = R’[H]‘? 

Let C’ = C @a R’. Let YE C’ be such that C’ = R’[H] [Y][‘]. Since C is flat over R, 

we can regard C as a subring of C’. Moreover, as I is the conductor ideal of R’ over 

R with (R’/I),,, = (R/I),,, = (R/M) = (R’/N), f rom the definitions of C and C’ it is clear 

that (i) (IC) = (ZC’) and (ii) (C’/(NC’)) = (C/(MC)). 

Let FE C be such that F = Y mod(NC’). Then as C’ = R’[H][‘l = R’[H][‘][Y] by 

Proposition 3.7 there exists an R’[H]-algebra automorphism 0 of C’ such that 
F E a(Y) mod (IC’). Since FE C and (ZC) = (ZC’), we get that cr( Y) E C. Let G = c( Y ). 

Claim. C is an A’-jibration over R[H, G]. 

Assume the Claim for the time being. Since 

nC/RIHl = cc @R[H,Gl QRIH,Gl,RIH]) @ %,R[H,G] 

and &R[H] is a free C-module of rank 2 it follows that &,R]H,G] is free of rank 1. 
Therefore in view of the Claim and Proposition 2.7, we get that C = 
R[H G][‘] = R[III][~‘. 

Thus the proof of the theorem will be complete if we prove the Claim. 

Proof of the Claim. Since C’ = C @RR’ = R’[H, G][‘] and R/M = R’/N, we get that 

C/(MC) = C’/(NC’) = R/M[H, (?][‘I, where 27, G denote the images of H, G respec- 
tively in C/(MC). Therefore, as R and R’ are birational and C, R[H, G] are flat over 
R[H] by [S, 3.81, C is an A’-fibration over R[H, G]. 

Thus the Claim and hence Theorem 3.11 is proved. 0 

We conclude this paper by giving the following example of an indecomposable 
A’-fibration over a one-dimensional noetherian domain R containing Q. In view of 
Corollary 3.9 and Remark 3.10 it is clear that such a ring R ought not to be 
seminormal. This example shows that Theorem 3.8 is (in some sense) best possible for 
an arbitrary domain R. 
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Example 3.12. Let K be a field of characteristic 0. Let 

T = K[Z] (= @‘I), R = KC.??, Z3], 

D = T[X, Y] (= T[‘]), A = R[X, Y + Z(X’Y’)] + (Z’D). 

Claim. A is an indecomposable A2-jibration over R. 

Proof. We first prove that A is an A’-fibration over R. 

Let I = (Z2T) = ((Z2, Z3)R). Then I is the conductor ideal of T over R. Therefore 
the following square of rings is Cartesian: 

R + T 

I I 
RfI 4 T/I 

Moreover A is the pullback of T-algebra D = T[X, Y] and R/Z-algebra 

(R/Z) [WI, W2] through T/I-algebra isomorphism (T defined by 

a(W,) = x, o(W,) = Y + (ZX”)Y2, 

where Z denotes the image of Z in T/I. Therefore by [lo, 3.11, A is a retract of 
a polynomial algebra over R. Hence A is finitely generated and flat over R. Now, as 
A OR T = D and A/(ZA) z (R/Z)[W,, W,] it is easy to see that A is an A2-fibration 

over R. 

Now we show that A is indecomposable. 
If A is decomposable then there exist A’-fibrations B and C over R such that 

A = B OR C as R-algebras. 

Since B is an A’-fibration over R, it is clear that B is the pullback of T-algebra 

T [U] and R/Z-algebra R/I[W] through T/I-algebra isomorphism 8 defined by 
0(W) = U + &r(U), where Z denotes the image of Z in T/Z and ~(U)E(T/I)[U]. 
Similar considerations hold for C. 

From the above discussion it is obvious now that if A = B OR C then there exist U, 

T/ED andf(U)E T[U], g(V)ET[V] such that 

D = T[X, Y] = T[U, V] and A = R[U + Zf(U), I/ + Zg(V)] + (Z2D). 

Let f(, g(T/) denote the images of f(U), g(V) in D/(ID). Since D/(ID) = 

(K[Z]/(Z’))[U, V], it follows that there existfi, g1 E Kt’l such that Zj(U) = zfi(U) 

and Zg( V) = Zg, (I’). Let 

ur = u + Zji(U), Vr = V + Zgr(V), 

x1 = x, Y1= Y + ZX2Y2. 
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Then A/(ZA) = K[Xr, Y,] = KIU1, VI] = Ktzl and D/(ZD) = (T/Z)[X, Y] = 
(T/Z)[U, V] = (T/Z)[U,, VI] = (T/Z)[X,, Y,]. Therefore in D/(ZD) we have 

- 
1 + 2ZX2Y = Jcx,rj (XI> YI) = Jwi,vIj (XI, YdJwv,(u~> ~dJ,,,,,W’, VI. 

Since A/(ZA) = K[Xr, Y,] = KIU1, V,] and D = T[X, Y] = T[U, V], it follows 
that J w,,v,#I, Yd and Jw,u,(~, VcK*. Moreover 

Jw,vjW1, v,) = 1 + ~(h’(U) + s;(V). 

Therefore in D/(ZZI) = K [X, Y ] = K [ U, V] we have 2(X2 Y) = f;(U) + g;(V). This 

is a contradiction by Lemma 3.1. 
Thus the proof is complete. fJ 

Remark 3.13. Note that by suitable reductions (and appropriate modifications in 

the proofs) it is easy to see that Theorems 3.8 and 3.11 and Corollary 3.9 will be true 
for any arbitrary one-dimensional noetherian ring R containing Q which is not 
necessarily a domain. 

Remark 3.14. The proof of Theorem 3.11 essentially shows that: Zf R is a one- 

dimensional noetherian ring containing Q, S = RI”] and A is an A’-jibration over S, then 

A is a retract of St’]. 
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